Deutsche Foschungsanstalt
far Luft- und Raumfahrt
DLR

Y e
583 Forschungsbericht
z g8
| RECEIVED BY.
S oSS
3 R BEAENO. {o:}:o 1 215
. “H PRCTUNT By
r:ﬁA g :P.;;"i’ 2 ’ -
—A Multlple-Block MultlgﬂdMettmd 0 AiAA
for the Solutlon . —

Fiitil |

A MULTIPLE-BLOCK MULTIGRID

SOLUTION OF THE
t P

(DFLR)

FB~90-45)

METHOD FUR THf
THREE-DIMENSIONAL EULER ANO NAVIER-STOKES
34

EQUATTONS

R

DLR-FB 90-45

l“

i i A

Ldin

(Als Manuskript gedruckt)

Herausgegeberivon
der Deutschen Forschungsanstalt fiir Luft- und Raumfahrt e V. (DLR).

Mitglied der Arbeitsgemeinschaft der GroBforschungseinrichtungen (AGF).

Zu beziehen durch

Wissenschaftliches Berichtswesen der DLR
Postfach 906058, 5000 KéIn 90.

ISSN 0171-1342

Deutsche Forschungsanstalt %
fur Luft- und Raumfahrt DLR

Forschungsbericht

A Multiple-Block Multigrid Method
for the Solution

of the Three-Dimensional Euler
and Navier-Stokes Equations

Harold Atkins

DLR
Institut fir Entwurfsaerodynamik
Braunschweig

31 pages
14 figures
8 references

DLR-FB 90-45

D IQ,SD

Manuskript eingereicht am 9. Oktober 1990

A Multiple-Block Multigrid Method for the Solution of the
Three-Dimensional Euler and Navier-Stokes Equations

DEUTSCHE FORSCHUNGSANSTALT FUR LUFT- UND RAUMFAHRT
Forschungsbereich Str&mungsmechanik

Institut fldr Entwurfsaerodynamik
Flughafen, D-3300 Braunschweig, FRG

Braunschweig, im September 1990

Institytsdirektor: Verfasser:
Dr.-Ing. H. KORNER Dr. H. ATKINS *

)i-

Dr. H. ATKINS, Gastwissenschaftler am Institut fir Entwurfsaerody-
namik in einem Austauschprogramm zwischen DLR und NASA, gegenwir-
tige Adresse: NASA Langley Research Center, Hampton, VA 23665-5225

Multiple block, multigrid, Runge-Kutta scheme, FBuler equations,

Navier-Stokes equations

A Multiple-Block Multigrid Method for the Solution of the Three Dimensio-
nal Fuler and Navier-Stokes Equations

Summary

A multiple-block multigrid method for the solution of the 3-D Euler and
Navier-Stokes equations 1s presented. The basic flow solver is a cell-
vertex method which employs central difference spatial approximations and
Runge-Kutta time stepping. The use of local time stepping, implicit resi-
dual smoothing, multigrid techniques and variable—coefficent numerical
dissipation results in an efficient and rdbust scheme. The multi-block
strategy places the block locp within the Runge-Kutta loop such that accu-
racy and convergence are not effected by block boundaries. This has been
verified by camparing the results of one— and two-block calculations in
which the two-block grid is generated by splitting the one-block grid.
Results are presented for both Euler and Navier-Stokes camputations of
wings and wing/fuselage canbinations.

Blockstruktur, Mehrgitter, Runge-Kutta Schema, Euler-Glei-

chungen, Navier-Stokes-Gleichungen

Ein blockstrukturiertes Mehrgitterverfahren fiir die I3sung der dreidimen—
sianalen Buler— und Navier—Stokes-Gleichmgen

Ubersicht

In der vorliegenden Arbeit wird ein blockstrukturiertes Mehrgitterverfahren
fiir die L3sung der 3-D Euler und Navier-Stckes-Gleichungen vorgestellt. Der
Strémungsléser besteht aus einer Zelleckpunktdiskretisierung mit zentralen
Differenzen und einem Runge-Kutta-Zeitschrittverfahren. Mit Hilfe von loka-
len Zeitschritten, einer impliziten Gl&ttung der Residuen, eines Mehrgit-
teralgorithmus' und kinstlichen dissipativen Termen mit variabler Ska-
lierung erhilt man ein effizientes und rcbustes Verfahren. Bei Verwendung
mehrerer Rechenbldcke wird die Rechenschleife Uber die Bldcke innerhalb der
schleife iber die Stufen des Runge-Kutta-Schemas angecrdnet, so da® Genau-
igkeit und Konvergenz des Verfahrens nicht durch die Blockgrenzen beein-
trichtigt werden. Dieses kann anhand von Rechnungen mit einem bzw. zwel
Rechenblécken gezeigt werden, wobel das Netz mit zwei Blécken durch Auftei-
lung des Netzes mit einem Block erzeugt wurde. Es werden Ergebnisse flr
Fligel und Fligelrumpfkambinationen und Ldsungen der Euler- und Navier-—
Stokes-Gleichungen angegeben.

Contents

...

page

10

12

12
13
13

14

16

16

17

Introduction

Advances in computers and algorithms have reduced the cost of simulating complex
flows to within reasonable values. However most calculations of practical interest still pose
problems either due to their shear size, or their geometric complexity, and sometimes both. A
technique that greatly eases this restriction is the use of multi-block strategy. In this
approach, the physical domain is subdivided into several smaller parts which have simpler
topologies and are accurately modeled by a manageable number of points. The grid genera-
tion also becomes easier because of the simplier topologies in each block. Relaxing con-
straints on the connectivity between block can further simplify the grid generation stage. In
most cases, however, techniques that simplify the generation of the grid usually complicate
the implementation of the flow solution algorithm.

The primary objective of this work is to implement a proven flow solver in a multi-block
frame work while preserving as nearly as possible its accuracy and convergence properties.
The basic flow solver! has been validated for three-dimensional flows over wings and found to
be accurate and efficient for single-block domains. The solver is a cell-vertex method which
uses central spatial differences and Runge-Kutta time stepping to solve the Euler or thin-layer
Navier-Stokes equations. Several acceleration techniques are applied to improve the
efficiency. Among these are: multigrid, local time-stepping, enthalpy damping (for inviscid
cases), implicit residual smoothing, and blended second and fourth difference numerical
smoothing. Turbulent flow calculations employ a Baldwin-Lomax model.

The multi-block algorithm presented here completely preserves the accuracy and conver-
gence properties of the base solver. Block loops which are placed within the Runge-Kutta
loop, combined with strict treatment of cut ghost point data, results in a robust algorithm.
The algorithm is implemented to support in-core solutions, or out-of-core solutions using a
SSD or similar device, with an acceptable overhead.

A secondary objective is to make the implementation as topology independent as possi-
ble without making the program too complicated to use. This is achieved by developing a
flexible data structure to describe and control all boundary conditions and block mappings.

The method is validated by comparing results from one and two block domains to the
same problem. Single block grids are split in different ways so that the global domain is
identical. Solution are presented for viscous and inviscid Wings, and for an inviscid wing-
fuselage combination. Comparisons are made with respect to the accuracy and efficiency.

A brief description of the governing equations and the basic flow solver is given; how-
ever, more detail may be found in reference 1. Emphasis is placed on the multi-block aspect
of the algorithm, which is discussed in detail.

Governing Equations
The normalized Integral form of the mass-averaged Navier-Stokes equations can be
written as

g—[ﬂ‘ Udv=—b[j?~ﬁds 1
Q 19}

where

U = (p,pu, pv, pw, pE)T

The variables p, u, v, w, and E denote the density, the Cartesian velocity components, and the
specific total internal energy. When appropriate, the Cartesian velocity components are also
denoted as uy, uy, us. The control volume is denoted by Q, its boundary surface by o€2, and
the unit outward normal by ®. The flux dyadic F is divided into its Euler (e) and viscous (v)
components.

F=F,-F,
$V o _’0
puV +pi 1
¥ = pvV +p7 and F,= 1’”!'
pwV + pk k-
pHV Ve+V-T

. . . - 2 . .

where V is the Cartesian velocity vector and 1, J, and ¥ are the Cartesian unit vectors (also
- - -3 o r . .

denoted as 1y, 15, i3). The shear stress dyadic is defined in terms of tensor notation as

5 - oy a“j 2. Oux
= liti.jlj] Hy=H E+§:_?8ij$:

3

The temperature T pressure p and enthalpy are related to the dependent variables through
the following algebraic relations:

A
T=@1 [E-—i—]

H=E+T and p=pT

The thermodynamic variables, P, T, and p are normalized by their freestream states
P., T.., and p... The velocity components arc normalized by yP./p.. Employing the
empirical power rule for viscosity results in the following relatons for the normalized viscos-
ity and conductivity:

TMa s Yo
LL——R—C;—(T/TJ) and k—‘Y—l Pr

Turbulence is modeled through the introduction of a wrbulent viscosity i, In the shear stress
terms, the laminar viscosity is replaced by yL+H, and the conductivity is modified by replac-
ing WPr with W/Pr+y/Pr.

The Solution Algorithm

The computation domain is formed by partitioning the physical domain into hexahedrons
to form a structured grid or several connecting structured grids. Discrete point values of the
solution vector are stored ar each vertex of the grid. Solutions to equation 1 are obtained by
approximating that equation at each vertex and integrating in time to obtain a steady state.
For the sake of efficiency, the correct time evolution is altered by the application of several
acceleration techniques. The solution algorithm follows the method of lines? in which the
time derivative is integrated as an ODE subject to the spatial terms as a forcing function.

d
Ej(f, Udv = -R(U) 2
and

R(U) = !‘j;i'~ﬁds 3

For convenience of discussion, the spatial terms, or residuals, are further divided into contri-
butions from the Euler, viscous and numerical smoothing terms.

R(U) = R, (U) + R,(U) + R,(U)
Equation 2 is integrated in time using a five-stage Runge-Kutta method.

wo =

W = W0~ o, Vi R! k=1,2,3,4,5

Ul =1 -wW
where

RE=L -R¥ R*=R,WH +R,W%+ ivas(wm)

m=0

The viscous residual is computed only during the first stage and held fixed thereafter. The
numerical smoothing terms of a given stage are a linear combination of the smoothing over
several stages’. Values for the parameter ¢ are

oy =1/4, 0y =1/6, o3 =3/8, ag=1/2, og=1.

The operators L and L denote the accumulated effect of boundary conditions and acceleration
techniques.

The spatial terms are constructed centrally about each point in the computational domain.
Each point lies at the intersection of eight cells which when combined form a super-cell, Fig.
1. The small cells will be referred to as the compact cells. The super-cell outlines the extent
of the stencil of the physical spatial terms.

The inviscid residual of the super-cell is formed by first computing the residual of each
compact cell, and then summing over the eight contributing cells. The flux through any face
of a compact cell is computed from the arithmetic average of the conserved variables at the
COrners.

The contribution of the viscous term is computed using an auxiliary cell about the point.
The vertices of this cell are the centers of the eight compact cells comprising the super-cell.
The face normal vectors for the auxiliary cell are computed by averaging the normal vectors
of the nearby compact cell faces. The gradients on the face of the auxiliary cell are computed
using a local coordinate transformation.

2 %3 ma 969

oy 9yodg dyon Iy

fof ¥ = x, y, or z. Only the gradients which are normal to the face in the cell and are in a
selected direction are accounted for, resulting in the thin-layer approximation. Multiple direc-
tions may be selected. Derivatives at the face are computed by second order central
differences. Scalar quantities are computed from second order averages. The viscosity is
computed from the average temperature.

The numerical smoothing employed is based on the formulation of Jameson, Schmidt,
and Turkel®. It is a combination of second and fourth derivative operators with coefficients
which depend on the pressure gradient, the acoustic wave speeds, and the cell aspect ratios.
The operator is formulated as a conservative one-dimensional operator for each coordinate
direction.

Boundary Conditions

The present method supports five physically different boundary conditions: slip and no-
slip walls, far-field conditions, symmetry planes, and cuts or mapped boundaries. The boun-
dary conditions are implemented in a flexible data structure that imposes no assumptions on
the topology. The implementation combines a variety of strategies, including the use of ghost
cells, and impacts the flow solver at several stages.

For the present, it is useful to consider the topological arrangement of boundaries of
cell vertex methods and compare them with the more common cell centered control volume
approach. Figure 2 illustrates both approaches for two common situations; the leading and
trailing edge regions of a wing with an H-type mesh. The grids in both cases are identical;
‘however the orientation of the flow variables is crucially different. The flow variables for the
‘cell vertex method coincide with the grid points, whereas for the cell centered method the
flow variables are located at the center of the cell (or are an average over the cell). As a

10

consequence, the cell centered method has a natural alignment between the flow variable and
the control volume, and between the boundaries of the control volume and the domain boun-
daries. In contrast, flow variables of the cell vertex method can lie on the interface of two
different boundary types, and the super-cell can extend outside the domain as well as overlap
boundary types.

The differences do not cause difficulties but they must be taken into consideration when
applying the boundary conditions. In addition to setting the flow variables at ghost points, the
implementation of boundary conditions involves modifications to the inviscid compact residu-
als, the numerical smoothing, and super-cell residuals. In the following sections each type of
boundary condition is briefly discussed.

Slip wall conditions require no flow through the surface. For the compact inviscid resi-
dual of ghost cells lying on a boundary of this type, the component of momentum normal to
the boundary is reflected from the neighboring interior cell. Additionally the super-cell resi-
dual is modified by a similar projection such that the normal component of the solution is
zero after the each Runge-Kutta stage. The ghost point values primarily influence the
numerical smoothing terms. Thus first order extrapolation is adequate to set the flow vari-
ables.

The no-slip condition requires the velocity to be zero at the boundary. All momentum
components of the compact inviscid residual of ghost cells on a no-slip wall are reflected, and
all similar components of the related super-cell residuals are zeroed. The flow variables at
ghost points are set by reflecting the velocities and thermodynamic quantities are treated as if
symmetric.

The symmetry condition requires the flow to be symmetric with respect to a specified
plane. A direct consequence is that there is no flow through the plane, similar to a slip wall.
The operations to the compact and super cell residuals are identical to those of slip walls
except the surface normal vector is constant over the surface. Flow variables at ghost points
are reflected from the interior points. Polar singularities are usually treated as symmewy
planes.

Far field boundary conditions communicate the influence of the freestream Mach number,
enthalpy, and flow angle to the computational domain. For subsonic inflow/outflow boun-
daries, a locally one-dimensional characteristic approach® is used 10 set the value of flow vari-
ables at boundary and ghost points. The super-cell residuals at far field boundary points are
zeroed and the flow solver discussed previously is not applied. The equations are linearized
about the values at the interior point nearest to the boundary, and characteristic quantities are
extrapolated from either the interior or the far field depending on the direction of the flow
through the boundary. In inviscid calculations, the energy is computed such that freestream
enthalpy is enforced. This is essential if enthalpy damping is to be used. The induced veloci-
ties due to lift are be accounted for through the use of a compressible lifting line theory.

Cut boundaries communicate data between two computational blocks or between discon-
nected regions in the same computational block. Ghost points associated with cut boundaries
correspond to a point somewhere within the interior of the physical domain. In the present
implementation, the mapping is assumed to be "one to one and onto". The condition is imple-
mented by copying values from the interior point to the ghost point. In multi-block out-of-

"

core calculations the interior point is not readily available. The data required to update a cut
is stored on a record addressable file and is updated after each Runge-Kutia stage as well as
after the multigrid injection and prolongation operations. The sequence for updating ghost
points is critical to the preservation of the convergence properties of the basic flow solver.
This is discussed in more detail in the following section.

Muiti-Block Algorithm

In a multi-block approach, the global domain is divided into several smaller blocks for
which grids are more easily generated. The solution algorithm is applied to each block in
some prescribed sequence. A variety of multi-block strategies have been applied to computa-
tional methods. The main issue is at what depth within the algorithm should the block loop
be placed, and how often should data be transferred between blocks. The simplest approach
to implement is to wrap a block loop around the complete flow solver. If applied to the
present flow solver, for example, one complete multigrid cycle would be performed in a given
block before moving on to the next. In this approach, it is impossible to maintain constant
communication of data between the block interfaces. Consequently, ghost point data at the
cuts must often lag, or sometimes lead, the data at the interior points. This approach works
well with equations which can be solved by relaxation methods, but is not suited for fast
time-asymptotic methods. A single-grid version of the present flow solver was used in a
multi-block algorithm of this type®’. Accurate solutions were obtained; however, the number
of time steps that could be performed in each block varied with the severity of the case. In
another instance involving a time-asymptotic multigrid algorithm?®, it was necessary to con-
clude the calculation with a significant number of single-grid time steps in order to converge
the solution. As the convergence rate of the basic flow solver increases, the importance of
block communication also increases.

In the present approach, the objective is to preserve the accuracy and rapid convergence
properties of the basic flow solver. To do this the block loop is placed deep within the algo-
rithm. Although this introduces some computational overhead, the resulting multi-block algo-
rithm closely simulates the results of a single block calculation. The method has been imple-
mented to either run in-core on a large memory machine or out-of-core using a solid-state-
disk (SSD) or similar device. The following description of the method is broken into three
topics: 1) the block solution algorithm, 2) the data structure of field variables, 3) the data
structure and control of boundary conditions.

The Block Solution Algorithm

The program structure is on three levels. At the top level are routines that control the
multigrid strategy, and thus, the grid level. At the middle level are routines controlling the
block loops, and at the bottom are block structured routines which perform an operation on a
given block and level. Figure 3 shows an approximate block diagram of the multi-block solu-
tion algorithm. The left side of the figure illustrates the major steps of the multigrid algo-
rithm while one Runge-Kutta time step is expanded on the right side. The operations indi-
cated within each box are performed for each block of data before proceeding to the next
block. Each stage of the Runge-Kutta time step is in a separate block loop with the boundary

12

conditions applied in two passes, before and after each stage. This is done to ensure that all
variables are at a consistent level at the start of each stage of the time step. More explained
further in the section on boundary conditions.

Data Structure

The data structure accommodates in-core computations or, for large problems or small
machines, out-of-core computations. For in-core computations, all levels and all blocks of
each field variable are stored in a long array. A separate pointer array stores the starting point
of the data for each block and level. All data required for a block operation is passed into the
low-level block structured routine through the argument list. In principle the low-level routine
does not know or need to know on which block it is operating.

For out-of-core computations, only the field variables for a single block are stored in
core at any given time. As before, for each block there is a pointer array which stores the
starting point of each level. The data for all blocks and levels are stored on two sets of files.
The use of two sets of files, as shown in fig. 4, eliminates the need for using slower record
addressable I/O (input/output), and permits the I/O to be performed synchronously. The
required data is read from the ’INPUT’ file(s), a block operation is performed, and the result-
ing data is written to the 'OUTPUT’ file(s). At the end of the block loop, all files are
rewound and files to which new data was written are switched with the corresponding
'INPUT’ file. The amount of /O is limited by reading only the data needed to perform the
block computation, and writing only the results of the computation. This is done by distribut-
ing the field variables across a set of files, instead of a single large file. For instance, when
computing the multigrid corrections, only the first and last solutions on a given level are
needed; residuals, smoothing coefficients, cell normals etc. are not needed and should not be
read or written. I/O is also limited by allocating a different set of files for each level. Some
data quantities, such as geometric data, are required only as input to a calculation and are
never altered. As such, only an 'INPUT’ file is needed. At present, the number of files
required for the field variables is 5 times the number of multigrid levels.

Boundary Conditions

The correct sequencing of the boundary conditions is perhaps the most important aspect
of the multi-block algorithm. The basic flow solver is a time-asymptotic method. Its stability
and convergence properties are strongly tied to the assumption that all variables entering into
the calculation of a spatial derivative are at the same stage and time level. When a ghost
point is allowed to lag or lead the interior data, the derivative computed near the boundary
looses its physical significance. Since the deviation caused by the lag or lead is tied direcdy to
the rate at which the flow is changing, a rapidly converging solution will be most seriously
affected. In the present algorithm, the lag and lead affects are completely eliminated through
the following three steps.

The first step is to ensure that all the boundary conditions are enforced before starting
the Runge-Kutta procedure. This is especially important for the multigrid process, because
the coarse grid solution is injected from the fine grid and may have little in common with the
‘previous coarse grid solution.

13

The second step involves the Runge-Kutta procedure itself. During this phase, the boun-
dary conditions are implemented in two passes, as was shown in fig. 3. In the first pass, only
cut boundaries, whose source data comes from higher blocks, are implemented. In the second
pass, all non-cut boundaries plus cut boundaries whose source data come from the current or
lower blocks are implemented. The effect of this procedure is illustrated in figure 5 for a
simple two block topology that connects on one side, and for one stage of the Runge-Kutta
time step. At the beginning of a Runge-Kutta stage, the data at all points are at the k-th level
except the cut ghost points of block 1, which are at the k-1 level. After applying the first
pass of boundary conditions all points in block | are at the k-th level. The Runge-Kutta stage
advances the interior solution to the k+1 level, and the second pass of boundary conditions
brings all ghost points of block 1, except the cut points, also to the k+1 level. Moving to
block 2, the first pass has no effect because the source data for this cut lies in a lower block.
The Runge-Kutta stage advances the interior points to the k+1 level, and the second pass of
boundary conditions brings all ghost points to the same level. At the completion of the block
loop, all points are at the initial level plus one. More importantly, at the start of each Runge-
Kuua stage, all ghost points are at the same level as the interior points.

This two pass procedure works well for simply connected domains, but it does not
entirely eliminate the lag for more complex topologies. This brings us to the third step. Fig-
ure 6 illustrates a topology with three blocks which overlap at a comer (in 3-D this represents
a line of data). The corner ghost point of block 3 maps to a ghost point of block 2 which in
turn maps to an interior point in block 1. The indirect mapping occurs whenever the corner
point is treated as a contiguous part of two overlapping sides, and results in a lag after the
two pass procedure. In the most complex case of 8 blocks all intersecting on a single corner,
the number of mappings required to connect the ghost point with the appropriate interior point
is greater. The comer point can be brought to the correct level by cycling through the cut
boundaries a sufficient number of times; however, the I/O cost is prohibitive. The obvious
remedy is to directly map the comer point from the cormrect interior point, rather than try to
connect it contiguously with one of the sides. Within the present boundary data structure, this
is easily done simply by treating the corner point at a separate cut.

Validation and Results

The validation consists of direct comparison of single block and multi-block results.
Several different single block grids were split along coordinate planes to give two block grids
which are geometrically identical to the single block case. All multi-block computations are
performed with the same parameters {time stepping, smoothing, etc) as the associated single
block case. No attempt is made to tune any of the parameters to optimize the result of any
case. Comparing the single block base-line results with the multi-block computations gives a
direct way to assess the accuracy and efficiency of the multi-block algorithm. A thorough
validation of the basic flow solver for single block domains is presented in reference 1.

Computations were performed for viscous and inviscid flows about an ONERA-M6 wing.
Both cases are at a2 Mach number of 0.84 and an angle of attack of 3.06 °. The Reynolds
number for the viscous case is 6 million based on the mean chord. Also presented are invis-
cid solutions for the flow over the DLR-F4 wing-body combination at a Mach number of .75
and angle of attack of .84°.

14

The first set of calculations were performed out-of-core on a Cray-XMP with 16MW of
core memory and 64AMW SSD memory. The small core size limited the size of the test cases
to under 250 thousand points (= 623 points). The inviscid case was computed on an O-O grid
topology with 128x32x32 cells. The viscous case employed a C-O grid topology with
112x24x16 cells (16 spanwise). The inviscid grid was split along each coordinate direction to
give three multi-block cases. The viscous grid was split only in the i and k directions. The
present implementation of the Baldwin-Lomax turbulence model requires any turbulent region
to reside in the same block as the wall from which the turbulent distance function is meas-
ured. The present grid was too coarse to allow a splitting in the j-direction.

Baseline results for the inviscid case are shown in figures 7 a-e. Comparison of the three
multi-block case with the base-line is shown in figures 8 a-d. The convergence histories are
essentially identical to the base-line for all three splittings, as are the Cp distributions at the
wing root section. Although the i-split case places the cut at the leading edge, there is no
visible difference there. The cut boundaries for the other cases do not intersect the wing root
and therefore the good agreement is 10 be expected. At the spanwise station of the cut, the
k-split case gives a slightly thicker shock than the base-line. The Cp contours on the wing
upper surface show that the cut of the k-split case is close to the bifurcation point in the wing
shock structure. The deviation is attributed to the approximations made to the smoothing term
at cut boundaries. A similar set of results is presented for the viscous case: figures 9 a-e,
show the base-line results, figures 10 a-d compare the multi-block cases with the baseline. As
with the inviscid case, the convergence histories and Cp distributions show little deviation
from the base line case, except for the k-split case which also thickens the shock.

Calculations for the last case, the DLR-F4 wing-body, were performed in-core on a
Cray-2. The surface grid (coarser than actually used) is shown in figure 11. The topology is
similar to0 a H-O topology except the entire k-plane maps onto the fuselage. The single block
grid, having 208x24x64 cells, was split in the k-direction to form upper and lower blocks.
Figure 12 a-d compare the convergence histories and Cp distributions on the wing. The Cp
distribution on the fuselage is given in figure 13. There are no significant differences between
the single block case and the multi-block case. o

The computational overhead, measured in terms of CPU time, varies from 8% to 20%
depending on the case. Much of the overhead can be attributed to two sources. When a sin-
gle block domain is split, the cut plane is duplicated in the second block increasing the total
number of points. This increase was as much as 14% in_the case of the viscous grid split in
the k-direction. The second source of overhead is the reduction of loop length that accom-
panies the decrease in block size. Where possible, the major routines have been coded to
loop over the entire block in one loop so as to minimize this effect. In figure 14 a and b, the
computational rate (in thousands of points per second) is plotted versus the block size (in
thousands of points). The figure shows the multi-block case along with a single block (non-
multigrid) case at different grid sizes. Note that the single block case experiences a large
reduction in computational rate due to the reduction in the total number of points.

15

Conclusions

A multi-block algorithm has been developed and validated for inviscid and viscous flows
about aircraft configurations. The method preserves the convergence and acCuracy properties
of the original flow solver. The method is ot sensitive to the introduction of new cut planes
at block boundaries. This allows domains to be blocked primarily on geometric considera-
tions rather than flow considerations. Computational overhead varies from 8% to 20%
depending on the case; however, much of the overhead is attributed to the decrease in block
size that results from splitting a single block grid. In a realistic situation, in which each block
is sufficiently large, the overhead is not expected to be significant.

References
1. Radespiel, R., "A Cell-Vertex multigrid method for the Navier-Stokes Equations,” NASA
TM 101557, January 1989.

2. Ames,W. F., Numerical Methods for Partial Differential Equations, Academic Press, New
York, 1977.

3. Martinelli, L., "Calculations of Viscous Flows with a Multigrid Method,” Ph.D. Dissera-
tion, MAE Department, Princeton University, 1987.

4. Jameson, A., Schmidt, W., Turkel, E., "Numerical Solutions of the Euler Equations by Fin-
ite Volume Methods Using Runge-Kutta Time-Stepping-Schemes,” AIAA Paper 81-1259,
1981.

5. Whitfield, D.L., Janus, J.M., "Three-Dimensional Unsteady Euler Equations Solutions Using
Flux Vector Splitting,” ATAA Paper 84-1552, 1984.

6. Rossow, C., Kroli, N., Radespiel, R., Scherr, S., "Investigation of the Accuracy of Finite

Volume Methods For 2- and 3-Dimensional Flows,” AGARD Conference: Validation of Com-
putational Fluid Dynamics, Vol.1, 1989.

7. Kroll, N., Rossow, C., Schemr, S., Schone, J., Wichmann, G., "Analysis of 3-D Aerospace
Configurations Using the Euler Equations,” ATAA paper 89-0268, 1989.

8. Fritz, W., "Numerical Simulations of 2D Turbulent Flow Fields with Strong
Separation,” ICAS-88-4.6.4, 16th Congress of the ICAS, Jerusalem, 1988.

16

Fig. 1 Structure of a super-cell about a grid point

x x x
x x
x
x X X
x x
Flow Variable Control Volume

Cell Vertex

Fig. 2 A comparison of cell centered and cell vertex methods

17

3

Runge-Kutta
time step

¥ _

Multigrid SetW0 = U°
forcing R, At

functions and all

) Boundary
Restriction Conditions

and
Injection Do k=1,5

!

Runge-Kutta B.C. pass 1
time step
M: Wo‘ O-kAt Hk-l

Coarser B.C. pass 2
Grids

Multigrid n+l 5
correction
prolongation —
and i
Update

—

Fig. 3 Block diagram of the multi-block algorithm

Bkl Blk2 BIk3 . Bikl Blk2 B3
rewind
Filel

INPUT File2 |
Filed3 [| l | |

\ A A l

Block Block

Calculation Calculation

OUTPUT Fite2 [| | | |]

Fig. 4 File structure and I/O0 flow for out-of-core
calculation

18

x x x x b x X X ¢ x » x
. % x
ghost points

x Block 1 Block 2 x
interior points/xv - x

Ghost point [evel key: k-1 =0 k=x k+l=®

x x X x x x x [X] X X X X X X %X x
x 3] x x
Initial State x k = x k x
x 3] x x
x x x x x x x [X X X X X XA X X x

x k.4 X x x x x x x x x x x x x X
Y \
x n x X
AfterB.Cpass1 k x . k x
x x x xX
x x X x x x x b 4 x x x x x x »® x
x x b 4 x x x x x x x x x x X x X
x x X V x
After R-K step x k+1 x x k+1 x
x x x x
x x X x x x xX x x x x % x x x x
®®®®’®®®= ® ORI O O® B
® ‘ « | ® L ®
After B.C.pass2 g k+1 x ® k+1 ®
® x ® ®
@ O ® B® ® ® x 3 03 R ®

Fig. 5 Block diagram of the implementation of boundary
conditions within the Runge-Kutta time step

19

y,

block1

block2

block3

Flg. 6 A three block topology for which the two pass boundary

procedure does not eliminate all lag

10° to
10" 08
3 10? 08 [-
% ¢
c 10° 0.4
10* 02
10° I 1 1 1 i 0.0 1 L ! I |
0 20 40 80 80 100 0 20 40 60 80 100
Time Steps Time Steps
a) Residual convergence b) Convergence of lift coefficient
18] 18 [
12 1.2
0.6 0.8
=
o o
0.0 0.0
08 08 |
1.2 1 1 i 1] 12 i 1 1 1 1
00 02 04 08 08 1.0 00 02 04 06 08 1.0
x / chord x / chord

c) Pressure distribution at n=0.0 d) Pressure distribution at n=0.79

e) Pressure contours on wing surface

Fig. 7 Single block Euler solution for flow over an ONERA-M6
wing at M = 84, a = 3.06

21

o RN Ona Block
" =" I-split
10
""" J-split
g 102 0 YNRUR, T L e K-spiit
he
8
< 100 F
0t —ee
It ST PR
10% 1 1 L] I
0 20 0 80 80 100
a) Influence of block structure on residual convergence
Time Steps
18
12 -
-0.6
Q
o o
0.0 |z
n=0.0
0.8
1.2 I 1 | S S
00 02 04 08 08 1.0 0.0 02 04 05 08 1.0
x / chord x / chord

b) Influence of block structure on pressure distributions

Fig. 8 Comparison of single and multi-block inviscid
solutions

22

Fig. 8

Two-Block (K-split)

continue

23

c) Influence of block structure on pressure contours

10° o5 [
10" 04 -
-g 16?2 03 |-
- -l
7 Q
107 | 02 ¥
104 = ot r
10% i 1 1 1.1 0.0 | 1 L 1 I
0 20 4 60 B0 100 0 20 40 60 80 100
Time Steps _ . B Time Steps
a) Residual convergernce b) Corvergence of 1ift coefficient
18
1.2
0.8
ot ° o
0.0
0.8 |
1.2 1 P11 |
00 02 04 08 08 10 00 02 04 08 08 10
x / chord _ x/chord
¢) Pressure distribution at n=0.0 d) Pressure dsitribution at n=0.79

e) Pressure contours on wing surface

Fig. 9 Single block Navier-Stokes solution for flow ovey an
ONERA-M6 wing at M = 84, a = 3.06, Re = 11, x 10

24

10° \\ “‘ — One Block
R ! =" l-gplit
10" \ ‘\ P
ERETS
?%
& 10’
10t -
10% 1 ! 1 |]
0 20 40 60 80 100
Time Steps
a) Influence of block structure <n residual convergence
a8 [1.8
12 - -1.2
-0.8 0.8
Q.
(&)
0.0 0.0
n=0.0 n=074
08 I~ 0.8
1.2 1 1 1 1 J 1.2 | L | 1 |
0.0 0.2 0.4 0.8 08 1.0 B 0.0 02 g4 08 08 1.0
x / chord x / chord
b) Influence of block structure on pressure distributions
Fig. 10 Comparison of single and multi-block solutions

25

Fig. 10 continue

Two-Block (K-split)

Single-Block

26

Influence of block structure on pressure contours

c)

NW
MM
i

]

x N
< ’\\?}\\\\\\\\\
‘ 3

(a) Surtace grid

{b) I-section

(c) K-section

Fig. 11 Surface grid, i=constant plane and j=constant plane
for the grid about the DLR-F4 wing-fuselage

27

One Block

10 \
RN \\ === Two Block
10
ERTE =
e
8
a 10
1w
10°% L L 1] I
0 20 40 80 80 100

Time Steps

a) Influence of block structure on residual convergernce

1.8
12 I~
-0.8
a
13 o
0.0
n=00
0.8
1.2 1 1 | B 1.2 1 1] {
00 02 04 08 08 1.0 00 02 04 08 08 1.0
x / chord x / chord

b) Influence of block structure on pressure distributicns

FPig., 12 Comparison of single and multi-block solutions for
inviscid flow over the DLR-F4 wing-fuselage at
M=20.75, a=0.84

28

Fig.

12

continue

29

Two-Block (K-split)

Single-Block

¢) Influence of block structure on pressure contours

One Block

Two Blocks

Fig. 13 Comparison of C, contours on the fuselage for single
and multi-block” solutions.

30

Single Biock, Single Grid

30

o
o
> o
20 12% L[20 %
;g Eﬂ . Single Block, MG
i
10 Two Block
° 1 1 1] 1 |
o 25 50 75 100 125 150

Block Size X 10~

a) Influence of block size and block structure on computation
rates of the Euler version of the code

25

Single Block, Single Grid

l",
e 15 o
x 9%Lop_ [15%
(]
s 10 Two Block Single Block , MG
i
5
V] 1 1 1 L]
0 10 20 30 40 50
-3
Block Size X 10

b) Influence of block size and block structure on computation
rates of the Navier-Stokes version of the code

Fig. 14 The computational rate Vs. block size for single- and
multi-block computations

31

Forschungsbereich Flugmechaniik/Flugfiihrung
Bereichsleitung: Flughafen, D-3300 Braunschweig
Institut fiir Flugmechanik
Institut fir Flugfihrung
Institut fur Dynamik der Flugsysteme
Institut fur Flugmedizin
Hauptabteilung Verkehrsforschung

Forschungsbereich Strémungsmechanik
Bereichsleitung: BunsenstraBe 10, D-3400 Gottingen
Institut fir Theoretische Stromungsmechanik
institut fur Experimentelie Stromungsmechanik
Institut fur Antriebstechnik
Institut fir Entwurfsaerodynamik

Forschungsbereich Werkstoffe und Bauweisen
Bereichsleitung: Pfaffenwaldring 38—40, D-7000 Stuttgart 80
Institut fiir Strukturmechanik
Institut fir Aeroelastik
Institut fir Werkstoff-Forschung
Institut fir Raumsimulation
Institut fir Bauweisen- und Konstruktionsforschung

Forschungsbereich Nachrichtentechnik und Erkundung
Bereichsleitung: Oberptfaffenhofen, D-8031 WeBling/Obb.
Institut flir Nachrichtentechnik
Institut fir Hochfrequenztechnik
Institut fur Optoelektronik
Institut fiir Physik der Atmosphare

Forschungsbereich Energetik

Bereichsleitung: Pfaffenwaldring 38—40, D-7000 Stuttgart 80
Institut fur Technische Physik
institut fur Technische Thermodynamik
Institut fur Physikalische Chemie der Verbrennung
Institut fir Chemische Antriebe und Verfahrenstechnik

Bereich Wissenschaftlich-Technische Betriebseinrichtungen
Bereichsleitung: Oberpfaffenhofen, D-8031 Wefling/ Obb.

Projekttrigerschaft Weltraumforschung/Weltraumtechnik
Leitung: Linder Hohe, D-5000 K&ln 90 (Porz)

Managementdienste

Projekttrdgerschaften fiir Arbeit, Umwelt und Gesundheit
Leitung: SlidstraBe 125,D-5300 Bonn 2

Veroffentlichungen der DLR

" DLR-Forschungsberichte
_Wissenschaftliche Erstvertffentlichungen aus der Forschungs-
. und Entwicklungsarbeit der DLR.

DLR-Mitteilungen

Beitrdge iiber Versuchsmethoden und -anlagen,
Rechenprogramme, Vortragsveranstaltungen, Literatur-
Ubersichten zu bestimmten Themenkreisen.

Jahresverzeichnis
der DLR-Forschungsberichte und DLR-Mitteilungen.
(deutsch und englisch)

Zeitschrift fiir Flugwissenschaften und
Weltraumforschung (ZFW)

Wissenschaftliche Zeitschrift mit Beitrdgen aus der
Luft- und Raumfahrtforschung und -technologie.

DLR-Nachrichten

Zeitschrift mit Beitragen liber aktuelle Forschungs-
arbeiten und mit Hinweisen auf DLR-Verdffentlichungen,
DLR-Erfindungen und -Patente, Projekttragerberichte
und Veranstaltungen.

Wissenschaftliche Berichte der Bereiche

Ubersicht tiber die wesentlichsten Forschungs- und
Entwicklungsarbeiten, Struktur, Aufgabenspektrum der
Bereiche sowie Ausblick auf die zukiinftige Entwicklung.
(deutsch und englisch)

Erfindungen und Patente
Liste mit erteilten bzw. angemeldeten Patenten.

